Accès gratuit
Numéro |
Reflets phys.
2024
The Energy Transition - The challenges of defossilisation
|
|
---|---|---|
Page(s) | 24 - 29 | |
Section | Measuring the issues and challenges | |
DOI | https://doi.org/10.1051/refdp/2024s024 | |
Publié en ligne | 30 septembre 2024 |
- V. Court et F. Fizaine, “Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions”, Ecological Economics 138 (2017) 145–159 (http://dx.doi.org/10.1016/j.ecolecon.2017.03.015). [CrossRef] [Google Scholar]
- E. Dupont et al., “Global available wind energy with physical and energy return on investment constraints”, Applied Energy 209 (2018) 322–338. (https://doi.org/10.1016/j.apenergy.2017.09.085). [CrossRef] [Google Scholar]
- E. Dupont et al., “Global available solar energy under physical and energy return on investment constraints”, Applied Energy 257 (2020) 113968, (https://doi.org/10.1016/j.apenergy.2019.113968). [CrossRef] [Google Scholar]
- P. Prieto et C. Hall, Spain’s Photovoltaic Revolution: The Energy Return on Investment, Springer (2013). [CrossRef] [Google Scholar]
- D. Weissbach et al., “Energy intensities, EROIs, and energy payback times of electricity generating power plants”, Energy 52 (2013) 210–221 (http://dx.doi.org/10.1016/j.energy.2013.01.029); “Energy intensities, EROI (energy returned on invested), for electric energy sources”, EPJ Web of Conferences 189 (2018) 00016 (http://doi.org/10.1051/epjconf/201818900016). [CrossRef] [Google Scholar]
- C.F. Jordan, “The Farm as a Thermodynamic System: Implications of the Maximum Power Principle”, Biophys Econ Resour Qual (2016) 1:9. (doi:10.1007/s41247-016-0010-z). [Google Scholar]
- S. Harchaoui et P. Chatzimpiros, “Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882-2013”, Journal of Industrial Ecology 232 (2018) 412–425. (doi: 10.1111/jlec.12760). [Google Scholar]
- I. Capellán-Pérez et al., “Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies”, Energy Strategy Reviews 26 (2019) 100399 (https://doi.org/10.1016/j.esr.2019.100399). [CrossRef] [Google Scholar]
- C. de Castro et I. Capellán-Pérez, “Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies”, Energies 13 (2020) 3036 (doi:https://doi.org/10.3390/en130123036). [CrossRef] [Google Scholar]
- O. Vidal et al., “Metals for a low-carbon society”, Nature Geoscience 6 (2013) 894–896. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.